欢迎访问山东大学材料科学与工程学院

当前位置: 首页 >> 师资力量 >> 系所师资 >> 材料物理化学研究所 >> 正文
白玉俊
发布日期:2015-10-01 作者: 浏览次数:
     

       

白玉俊

出生年月

1967.12

学 位

博士

专业技术职务

教授

聘任时间

2015.07

学术团体兼职

Energy & Environmental Science、Nature communications、Journal of Materials Chemistry、Chemical Communications、Carbon、Nanoscale、中国科学等国内外期刊审稿人。国家“863”项目、国家自然科学基金、山东省科技发展计划项目、内蒙古自治区自然科学基金、河北省自然科学基金、国家科技奖等评审专家。

1. 学习和工作经历

2003/11- 至今   山东大学材料学院,教授。

2002/11-2003/10 山东科技大学机械系,教授。

2000/12-2003/06 山东大学晶体材料国家重点实验室,博士后。

2000/11-2002/10 山东科技大学机械系,副教授。

1996/10-2000/10 现山东科技大学机械系,讲师。

1995/07-1996/09 山东科技大学机械系,助教。

1989/07-1992/09  洛阳407厂测试中心工作,助理工程师。

 

1997/09-2000/07 山东大学, 获材料学博士学位。

1992/09-1995/07 山东大学, 获材料学硕士学位。

1985/09-1989/07 哈尔滨工程大学, 获材料学学士学位。

2. 研究领域介绍

(1)先进功能材料的设计、制备、性能及应用研究;

(2)高性能锂离子电池电极材料的设计、加工、性能及应用研究;

(3)超级电容器电极材料设计、加工、性能及应用研究;

(4)先进陶瓷材料的设计、制备、性能及应用研究。

3. 取得科研成果情况

在Advanced Energy Materials、Journal of Materials Chemistry A、ACS Applied Materials & Interfaces、Journal of Power Sources、Carbon等杂志发表SCI论文130余篇,被Materials Science & Engineering R-Reports、Progress in Materials Science等期刊他引2000次。获授权国家发明专利20余项。

主要论文:

1.Li2ZnTi3O8/C anode with high initial Coulombic efficiency, long cyclic life and outstanding rate properties enabled by fulvic acid, Carbon 163 (2020) 297-307。

2.On the capacity degradation of Li4Ti5O12 during long-term cycling in terms of composition and structure. Dalton Transactions, 2020, DOI: 10.1039/D0DT01719A

3.Optimizing the cycling life and high-rate performance of Li2ZnTi3O8 by forming thin uniform carbon coating derived from citric acid. Journal of Materials Science. 2020, 10.1007/s10853-020-04980-1

4.Synergistic modification of commercial TiO2 by combined carbon sources of citric acid and sodium carboxymethyl cellulose. New J. Chem., 2020, 44,1571

5.Co-Modification of commercial TiO2 anode by combining a solid electrolyte with pitch-derived carbon to boost cyclability and rate capabilities. Nanoscale Adv., 2020, 2, 2531-2539.

6.Sodium carboxymethyl cellulose as an effective modifier for boosting the electrochemical performance of commercial TiO2, Energy Technology 2019

7.A uniform few-layered carbon coating derived from self-assembled carboxylate monolayers capable of promoting the rate properties and durability of commercial TiO2. RSC Adv., 2019, 9, 36334.

8.A Comprehensive Understanding of Lithium–Sulfur Battery Technology. Advanced Functional Materials. 2019, 1901730.

9.Optimizing the supercapacitive performance and cyclability of Ni(OH)2 by simply compositing with CuO concomitant with mutual doping. ChemElectroChem 10.1002/celc.201901204.

10.Li2ZnTi3O8 Coated with Uniform Lithium Magnesium Silicate Layer Revealing Enhanced Rate Capability as Anode Material for Li-Ion Battery. Electrochimica Acta 2019, 315, 24-32.

11.Effective enhancement in rate capability and cyclability of Li4Ti5O12 enabled by coating lithium magnesium silicate. Electrochimica Acta 2019,295, 891-899.

12.Fabricating Mn3O4/Ni(OH)2 nanocomposite by water-boiling treatment to utilize in asymmetric supercapacitors as electrode material. ACS Sustainable Chemistry & Engineering. 2018, 6, 15688-15696.

13.Combined Modification of Dual-Phase Li4Ti5O12-TiO2 by Lithium Zirconates to Optimize Rate Capabilities and Cyclability. ACS Applied Materials & Interfaces. 2018, 10, 24910-24919.

14.Li1.3Al0.3Ti1.7(PO4)3 Behaving as a Fast Ionic Conductor and Bridge to Boost the Electrochemical Performance of Li4Ti5O12. ACS Sustainable Chemistry & engineering 2018, 6, 7273-7282.

15.Combined Modification by LiAl11O17 and NaAl11O17 to enhance the electrochemical Performance of Li4Ti5O12. Applied Surface Science 2018, 447, 279–286.

16.Boosted Electrochemical Performance of Li2ZnTi3O8 Enabled by Ion-Conductive Li2ZrO3 Concomitant with Superficial Zr-doping. Journal of Power Sources 2018, 379, 270-277.

17.Boosting the cyclability of commercial TiO2 anode by introducing appropriate amount of Ti9O17 during coating carbon. Journal of Alloys and Compounds 2018, 762, 598-604.

18.Ionic Conductor of Li2SiO3 as an Effective Dual-Functional Modifier to Optimize the Electrochemical Performance of Li4Ti5O12 for High-Performance Li-Ion Batteries. ACS Appl. Mater. Interfaces20179 (2), 1426–1436.

19.Li4Ti5O12 Composited with Li2ZrO3 Revealing Simultaneously Meliorated Ionic and Electronic Conductivities as High Performance Anode Materials for Li-ion Batteries. Journal of Power Sources.  2017, 354, 16-25.

20.Improving the Electrochemical Performance of Li2ZnTi3O8 by Surface KCl Modification. ACS Sustainable Chemistry & Engineering. 2017, 5, 6099-6106.

21.Enhancing the electrochemical performance of commercial TiO2 by eliminating sulfate radicals and coating carbon. Electrochimica Acta 2017, 245, 186–192.

22.Efficient mass-fabrication of amorphous mesoporous MnSiO3/C with high stability through simple water-boiling treatment and the Li-ion storage performance. New Journal of Chemistry. 2017, 41, 4295-4301.

23.Fe3O4 nanoparticles decorated on the biochar derived from pomelo pericarp as excellent anode materials for Li-ion batteries. Electrochimica Acta 2016, 222: 1562–1568.

24.Fabricating MnO/C composite utilizing pitch as soft carbon source for rechargeable Li-ion batteries. New Journal of Chemistry. 2016, 40, 9986-9992. 

25.Manganese silicate drapes as a novel electrode material for supercapacitors. RSC Adv., 2016, 6, 105771–105779.

26.Al2O3-modified Ti–Mn–O nanocomposite coated with nitrogen-doped carbon as anode material for high power lithium-ion battery. RSC Adv., 2016, 6, 40953–40961.

27.One-step fabrication of Fe-Si-O/carbon nanotube composite anode material with excellent high-rate long-term cycling stability. Journal of Alloys and Compounds 686 (2016) 318-325

28.Nitrogen-Doped Carbon-Coated Ti−Fe−O Nanocomposites with Enhanced Reversible Capacity and Rate Capability for High-Performance Lithium-Ion Batteries. RSC Advances, 2016, 6, 65266–65274

29.Improving the Li-ion storage performance of commercial TiO2 by coating with soft carbon derived from pitch. Electrochimica Acta. 2016, 212 , 155-161

30.One-step fabricating nitrogen-doped TiO2 nanoparticles coated with carbon to achieve excellent high-rate lithium storage performance. Electrochimica Acta  2016,187:389-396

31.Ti-Sn-O Composite Oxides Coated with N-doped Carbon Exhibiting Enhanced Lithium Storage Performance. New J. Chem., , 2016, 40: 285-294.

32.Simple fabrication of TiO2/C nanocomposite with enhanced electrochemical performance for lithium-ion batteries. Electrochimica Acta 2015, 169: 241–247

33.Carbon-coated manganese silicate exhibiting excellent rate performance and high-rate cycling stability for lithium-ion storage. Electrochimica Acta. 2015, 186: 572–578

34.Excellent performance of carbon-coated TiO2/Li4Ti5O12 composite with low Li/Ti ratio for Li-ion storage. RSC Advances, 2015, 5, 93155 - 93161

35.Enhancing the comprehensive Electrochemical Performance by compositing intercalation/deintercalation-type of TiO2 with conversion-type of MnO. Journal of Alloys and Compounds 640 (2015) 15–22.

36.Simple Preparation of Carbon Nanofibers with Graphene Layers Perpendicular to the Length Direction and the Excellent Li-ion Storage Performance. ACS Applied Materials & Interfaces.  20157 (9), pp 5107–5115.

37.Enhancing the Long-Term Cyclability and Rate Capability of Li4Ti5O12 by Simple Copper-Modification. Electrochimica Acta 155 (2015) 132–139.

38.Enhancing the reversible capacity and rate performance of anatase TiO2 by combined coating and compositing with N-doped carbon. Journal of Power Sources 2015, 273: 472-478.

39.Li-Ion Storage Performance of MnO Nanoparticles Coated with Nitrogen-Doped Carbon Derived from Different Carbon Sources. Electrochimica Acta 2014, 146: 249–256.

40.Thermal formation of porous Fe3O4/C microspheres and the lithium storage performance. Journal of Alloys and Compounds 2014, 597: 30–35.

41.Li-ion Storage Performance of Carbon-Coated Mn-Al-O Composite Oxides. J. Phys. Chem. C 2014, 118: 23559−23566.

42.Enhanced Electrochemical Performance of Zn-Doped Fe3O4 with Carbon Coating. Electrochimica Acta. 117 (2014) 230–238.

43.Batteries. ACS Applied Materials & Interfaces. 2013, 5, 9470−9477.

44.Enhanced electrochemical performance of FeWO4 by coating nitrogen-doped carbon. ACS Applied Materials & Interfaces. 2013, 5, 4209−4215.

45.Preparation of carbon-coated MgFe2O4 with excellent cycling and rate performance. Electrochimica Acta. 2013, 90, 119–127.

46.Large-scale preparation of hollow graphitic carbon nanospheres. Materials Chemistry and Physics 2013, 137: 904-909.

47.Yttrium–modified Li4Ti5O12 as an effective anode material for lithium ion batteries with outstanding long–term cyclability and rate capabilities. Journal of Materials Chemistry A, 2013, 1 (1), 89 – 96.

48.Excellent long-term cycling stability of La–doped Li4Ti5O12 anode material at high current rates. Journal of Materials Chemistry, 2012, 22, 19054–19060.

49.Large-scale synthesis of hollow highly-graphitic carbon nanospheres by the reaction of AlCl3·6H2O with CaC2. Carbon.2012, 50:1871-1878.

50.Low Temperature Preparation of Hollow Carbon Nano-polyhedrons with Uniform Size, High Yield and Graphitization. Materials Chemistry and Physics. 2012, 134(2–3): 639–645.

51.Toughening and reinforcing zirconia ceramics by introducing boron nitride nanotubes. Materials Science & Engineering A. 2012, 546: 301–306.

52.In-situ synthesis of one-dimensional MWCNT/SiC porous nanocomposites with excellent microwave absorption properties. Journal of Materials Chemistry. 2011, 21(35): 13581-13587.

53.Preparation of Carbon Nano-Onions and Their Application as Anode Materials for Rechargeable Lithium-ion Batteries. The Journal of Physical Chemistry C 2011, 115, 8923–8927.

54.Template-Free Synthesis of Hollow Carbon Nanospheres for High-Performance Anode Material in Lithium-Ion Batteries. Advanced Energy Materials. 2011, 1: 798–801. Synthesis of hollow carbon sphere/ZnO@C composite as a light-weight microwave absorber. Journal of Physics D: Applied Physics. 2011, 44, 265502。

55.One-Step preparation of Six-Armed Fe3O4 Dendrites with Carbon Coating applicable for Anode Material of Lithium-ion Battery. Materials Letters 2011, 65, 3157–3159.

56.Microwave absorption properties of TiN nanoparticles. Journal of alloys and compounds. 2011, 509: 10032-10035.

57.Fabrication of Alumina Ceramic Reinforced with Boron Nitride Nanotubes with Improved Mechanical Properties. Journal of the American Ceramic Society. 2011, 94(11): 3636–3640.

58.Microstructure and mechanical properties of alumina ceramics reinforced by boron nitride nanotubes. Journal of the European Ceramic Society 2011, 31: 2277–2284.

59.Thermal Shock Resistance Behavior of Alumina Ceramics Incorporated with Boron Nitride Nanotubes. Journal of the American Ceramic Society 2011, 94(8): 2304–2307.

60.Simple synthesis of mesoporous boron nitride with strong cathodoluminescence emission. Journal of Solid State Chemistry 2011, 184 (4) 859–862.

61.Rapid, Low temperature synthesis of β-SiC nanowires from Si and graphite. Journal of the American Ceramic Society. 2010, 93 (9) 2415–2418.

62.Low-Temperature Synthesis of Meshy Boron Nitride with a Large Surface Area. European Journal of Inorganic Chemistry. 2010, 2010(20): 3174–3178.

63.Facile synthesis of boron nitride coating on carbon nanotubes. Materials Chemistry and Physics, 2010, 122(1): 129-132.

64.Simple synthesis of hollow carbon spheres from glucose. Materials Letters. 2009, 63(29):2564–2566.

65.Large-scale synthesis of BN nanotubes using carbon nanotubes as template. Materials Letters. 2009, 63(15): 1299-1302.

66.Facile Synthesis of Si3N4 Nanocrystals Via an Organic–Inorganic Reaction Route. Journal of the American Ceramic Society. 2009, 92(2): 535-538.

67.Synthesis of Carbon Spheres via a Low-Temperature Metathesis Reaction. The Journal of Physical Chemistry C 2008, 112(32), 12134–12137.

68.Rapid synthesis of graphitic carbon nitride powders by metathesis reaction between CaCN2 and C2Cl6. Materials Chemistry and Physics. 2008, 112(3):1124-1128.

69.Carbon nanobelts synthesized via chemical metathesis route. Materials Letters, 2007, 61(4-5): 1122-1124.

70.HRTEM Microstructures of PAN precursor fibers. Carbon. 2006, 44(9):1773-1778.

71.Rapid synthesis of Si3N4 dendritic crystals. Scripta Materialia. 2006, 54(3): 447–451.

72.One Step Convenient Synthesis of Crystalline β-Si3N4. Journal of Materials Chemistry. 2005, 15, 4832–4837.

73.Low temperature induced synthesis of TiN nanocrystals. Inorganic Chemistry. 2004, 43(12): 3558-3560.


授权发明专利

1.一种硅酸镁锂包覆改性钛酸锌锂负极材料及其制备方法. ZL 2018107790644

2.一种氯化钾改性钛酸锌锂负极材料的制备方法. ZL 201710111360.2

3.一种复合锆酸锂改性双相钛酸锂/二氧化钛负极材料的制备技术. ZL 2018101615872.

4.一种钼酸钠改性钛酸锌锂负极材料及其制备方法 ZL 201710624260X.

5.一种硅酸锂改性钛酸锂负极材料及制备方法、应用ZL 201610045279.4

6.一种钛酸锌锂/二氧化钛复合负极材料及其制备方法。ZL201620059176.9.

7.一种钇改性的钛酸锂负极材料及其制备方法。ZL2012102953084.

8.一种石墨与过渡金属氧化物复合负极材料及其制备方法。ZL201210398479X.

9.一种高稳定性非晶硅酸锰的制备方法ZL 201610237316.1

10.一种低温反应制备高石墨化空心纳米碳球的方法。ZL201110219856.4.

11.氮化硼纳米管增强的氮化硅陶瓷及其制备方法。ZL200910015758.1

12.一种氮化硼纳米管增强增韧氧化锆陶瓷的方法。ZL201010277828.3

13.一种低温辅助反应诱发合成碳化硅或碳化硅纳米管的方法。ZL200910020314.7

14.一种低温反应制备多孔氮化钛的工艺。ZL200910256087.8。

15.一种低温制备氮化硅粉体材料的方法。ZL200810015630.0。

16.氮化硼纳米管增强的氧化铝陶瓷的制备方法。ZL200910014220.9。

17.一种制备氮化硼包覆碳纳米管纳米线及氮化硼纳米管的方法。ZL200810015631.5。

18.一种硅纳米管和纳米线的制备工艺。ZL200810014146.6。

19.一种低温制备氮化硅粉体材料的方法。ZL200410023753.0。

20.碳氮化钛三元化合物粉体材料的制备方法。ZL200410023706.6。


主要获奖:

1.2019年度山东优秀硕士学位论文指导教师。

2.2019年度山东大学优秀硕士学位论文指导教师。

3.2012年12月山东省高等学校优秀科研成果奖:Si-B-C-N系材料的低温制备及相关性能研究。自然科学类二等奖。

4.2010年度山东省优秀硕士学位论文指导教师。

5.2010年度山东大学优秀硕士学位论文指导教师。

6.2009年7月山东省研究生优秀科技创新成果奖指导教师

7.2005年12月, 山东省高等学校优秀科研成果奖三等奖:无机材料超细粉体的制备及表征。

8.2002年10月,山东省高等学校优秀科研成果奖二等奖:CuZnAlMnNi形状记忆合金的转变行为。

9.2001年9月,山东省科技进步三等奖:铜基形状记忆合金的相变特性及组织结构的演化。

10.2001年12月,山东省第五批中青年学术骨干。


4. 承担科研项目情况

1. 2019.07-2022.06山东省自然科学基金(ZR2019MEM029):工业氧化钛基负极材料电化学性能的优化及相关机理研究。

2. 2019.5-2022.5软包锂电池负极材料性能优化技术研发(横向)。

3. 2018.5-2021.5锰酸锂正极材料性能优化技术研发(横向)。

4. 2016.1-2017.12山东省重点研发计划(2016GGX102031):硅酸锂改性钛酸锂负极材料的关键技术研究。

5. 2016.7-2018.12 山东省自然科学基金(ZR2016EMM18):离子导体硅酸锂改性Li2ZnTi3O8负极材料的电化学性能及改性机理研究。

6. 2015.11-2018.11钛酸锂负极材料的制备技术研发(横向)。

7. 2016.1-2020.12 国家基金重点项目(51532005):介孔/微孔复合材料的控制制备与储能应用。

8. 2015.7-2017.12,山东省自然科学基金(ZR2015EM016):铁基硅酸盐锂离子电池负极材料的制备及其电化学性能研究。

9. 2015.2-2018.3,锂离子电池负极材料性能测试(横向)。

10. 2014.10-2016.9,锂离子电池复合负极材料的制备技术研发(横向)。

11. 2014.4-2016.4,锂电池负极材料的研制(横向)。

12. 2013.12-2014.12,一种低温制备氮化硅粉体材料的方法(山东省)。

13. 2013.11-2014.10,高性能锂离子电池负极材料的研制(横向)。

14. 2013.9-2014.9,改性石墨负极材料的研制(横向)。

15. 2012.7-2013.7,高性能人造石墨负极材料的研制(横向)。

16. 2012.1-2014.12,山东大学自主创新基金(2012ZD004):多元氧化物锂离子电池负极材料的制备及电化学性能研究。

17. 2011.10-2013.9,晶体材料国家重点实验室2011年度开放课题(KF1105):改性碳材料的吸波性能研究。

18. 2011.1-2012.12,山东省科学技术发展计划项目(2011GGX10205)新型BNNTs/Si3N4复合材料的制备及其关键技术。

19. 2010.1-2012.12,国家自然科学基金项目(50972076):氮化硼纳米管大量制备、形成机理及其对氧化铝陶瓷的强韧化作用。

20. 2009.1—2010.12,山东省科学技术发展计划项目(2009GG10003001):碳纳米管/纳米线表面包覆氮化硼技术及包覆后的相关技术研究。

21. 2009.12-2011.12山东大学自主创新基金(2009TS001):BNNTs/Al2O3复合陶瓷的制备、高温性能及强韧化机理研究。

22. 2009.1—2010.12,山东省科学技术发展计划项目(2009GG10003003):纳米α-Al2O3粉体的先驱体低温热解法制备及其关键技术研究。

23. 2008.12—2011.12,山东省自然科学基金项目(Y2008F40):液态金属浮力作用下纳米空心碳球的大规模制备、机理及储氢性能。

24. 2009.1—2011.12,国家自然科学基金项目(50872072):液态金属浮力下硅纳米管和纳米线的大量制备、生长机理及相关物性研究。

25. 2008.12—2011.12,碳化硅低温制备技术(横向)。

26. 2001年7月-2003年6月,中国博士后科学基金:通过TEM和HRTEM研究纳米半导体材料的奇异性能与组织结构的关系。

27. 2001年9月-2004年8月,山东省自然科学基金(Y2001F06):铜基形状记忆合金在低温下的转变特性及组织结构的演化。

28. 2001年10月-2004年9月,山东省第五批中青年学术骨干项目:无机非金属功能材料超细粉体的制备。

29. 1992年9月-1995年7月,山东省自然科学基金(89F0274):铜基形状记忆合金的研究。

30. 2002年9月-2005年8月,山东省教育厅项目:逆变微弧等离子设备及在内燃机关键零件上的应用。

5. 其他

培养学生获研究生国家奖学金8人次、山东大学校长奖学金1人次;山东大学“五·四”青年科学奖4人次、山东省优秀硕士学位论文2人次、山东大学优秀硕士学位论文2人次、出国20余人。

毕业去向:高校、研究所等

招生人数:博士生1~2/年,硕士生2~3/


联系方式

15168809019

联系地址

山东大学材料科学与工程学院 济南市经十路   17923号

电子邮箱

byj97@sdu.edu.cn;byj97@126.com







上一篇:尹龙卫
下一篇:张建新